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Phytologists have a primary interest in understanding plant growth, development and environmental 

responses. Experimentally, we rely on probing these by perturbing a system and monitoring changes, 

whether it be growth rate with temperature or gene expression in response to stress. To assess the 

significance of data from such experiments, frequentist statistics are used to ascertain the probability that 

a difference in a test statistic between conditions was due to chance (a  value). When data are not 𝑝A
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normal, the adage is to use a non-parametric test for this analysis: the most common being the Mann-

Whitney-Wilcoxon (MWW) test. Here, we explore conditions in which the MWW test is unsuitable and 

propose the use of a bootstrap approach instead.

Most experiments aim to assess whether some metric is greater or less under different conditions, by an 

analysis of the change in the median or mean of that metric. The MWW tests the null hypothesis that two 

data distributions are the same (Mann & Whitney, 1947), not whether the two distributions have the 

same median. Therefore, it is possible to find a significant difference in an MWW test with distributions 

that have the same median, but different variances (i.e. heteroskedastic data) (Hart, 2001). 

These conditions are not uncommon in several experimental contexts, one being the measurement of 

symplastic cell-to-cell spread of GFP (Oparka et al., 1999; Burch-Smith & Zambryski, 2010). These assays 

allow the experimenter to count the number of cells (‘cell count’), or the number of concentric rings of 

cells (‘cell layers’), to which GFP has spread from a single cell (Fig. 1a) as a measure of the status of 

connectivity. Neither cell nor layer counts are normally distributed (Fig. 1b – d, upper), so most studies 

use the non-parametric MWW test to compare conditions to identify factors that regulate the connection 

and communication between cells.

However, it is also clear that the shape of the distributions differs between experimentally compared 

conditions or genotypes (Fig. 1b, c) (Guseman et al., 2010; Diao et al., 2018; Cheval et al., 2020). Thus, if 

an MWW test is used on cell count data, the difference in distribution shapes between conditions may 

lead to the erroneous conclusion that there is a significant difference in the amount of spread of GFP. 

Therefore, a different statistical method is required to properly interpret differences in non-parametric 

heteroskedastic data. For this, we propose a bootstrap method (Efron, 1979).

A  value is defined as the probability of observing a value at least as extreme as the observed test static. 𝑝

This is done by a comparison to the null distribution, which describes the probability distribution of the 

test static when the null hypothesis is true. In the case of cell-to-cell connectivity, the test statistic is the 

difference in medians ( ). The null distribution describes the probability of observing a difference in 𝜃

medians when there is no true difference in the underlying data. Usually, a known distribution is used 

(e.g. t-distribution or F-distribution) but in this case it is unknown because the data do not follow 

parametric distributions (Fig. 1b, c).

Bootstrapping techniques can be used to generate a null distribution de novo from the observed data 

already collected if the samples are independent. This removes the requirement of using a known 

distribution. To do this, the observed data are sampled with replacement to generate a resample. This A
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mimics what the experimenter has done originally when observing the true population. The relationship 

between multiple resamples and the observed data can be used to reveal how the observed data relate to 

the true population, and so estimate a  value for the observation.𝑝

An example R function is provided to perform this analysis (Supporting Information Notes S1 

medianBootstrap.R, https://github.com/faulknerfalcons/Johnston-2020-Bootstrap), which requires two 

arguments, i.e. two vectors of numbers: control and treatment. The function generates a null distribution 

to compare against by resampling each vector  times (by default 5000) and, for each resample, 𝑁

generating a resampled test statistic ( ). These  resampled test statistics are made into a null 𝜃 ∗ 𝑁

distribution by  (Fig. 1b – c, lower) as suggested by Hall and Wilson (1991).|𝜃 ∗
𝑛 ― 𝜃|

As this is a random sampling technique, an exact  value cannot be calculated but is estimated by a 𝑝

Monte Carlo  value (Eqn. 1). Thus,  is compared to the null distribution to find the chance of observing a 𝑝 𝜃

value at least as extreme (line on Fig. 1b – c, lower). A  is added to the numerator and denominator in +1

Eqn. 1 as suggested by Davison and Hinkley (1997): conceptually, this can be considered as including the 

observed sample among the bootstrap resamples.

𝑝 =  
∑𝑁

𝑛 =  1𝐼(|𝜃 ∗
𝑛 ― 𝜃| ≥  𝜃) + 1

𝑁 + 1    𝐸𝑞𝑛. 1

where  is the indicator function and  is the nth resampled test statistic.𝐼( ∙ ) 𝜃 ∗
𝑛

As  is an estimate of  a 95% confidence interval should be constructed, where  will fall within this 𝑝 𝑝, 𝑝

range 95% of the time (Wilson, 1927).

This method is not confounded by differences in variance or shape as with the MWW test. To illustrate 

this, we compared the Type I error rate (false positives) between the MWW and medianBootstrap tests, 

when testing if there is a difference in medians between two populations for which there was no true 

difference in medians, i.e.  (Fig. 2). In this scenario, an error rate of 5% is expected at . 𝜃 = 0 𝛼 = 0.05

Equal samples ( ) for each population were drawn from normal distributions with the same 𝑛𝐴, 𝑛𝐵 = 100

median and three different shapes, simulated in R 4.0.0 (R Core Team, 2020).

In the first instance, where both distributions are equal ( )), both the MWW and 𝐴,𝐵~𝑁(0,1

medianBootstrap methods gave a difference in medians about 5% of the time, as expected (4.5% (95% CI 

[3.4, 6.0]) and 4.9% (95% CI [3.7, 6.4]), respectively) (Fig. 2a). When variances differed between 

populations ( ), )), the MWW test had a false positive rate significantly higher than the 𝐴~𝑁(0,1 𝐵~𝑁(0,52A
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set 5% of 7.5% (95% CI [6.0, 9.3]). Conversely, the false positive rate of the medianBootstrap method was 

correctly controlled at 4.7% (95% CI [3.6, 6.2]) (Fig. 2b). When two samples are drawn from populations 

with equal variance and median, but differing shape and mean ( , ), a 𝐴~𝑁(1 ―
1

3 2,
3

80) 𝐵~𝐵𝑒𝑡𝑎(1,3)

medianBootstrap method finds a significant difference in 5.1% of the trials (95% CI [3.9, 6.6]), as expected. 

Whereas, an MWW test inflates the Type I error rate to 17% (95% CI [15, 19]) (Fig. 2c). 

The medianBootstrap method was robust to unequal sample sizes in all cases provided the sample 

number was 10 or greater (Fig. 2). Thus, we recommend that both samples have at least 10 constituents 

for a robust result. Alongside this sample size requirement, samples must be independent and 

representative of the overall population. A bootstrapped difference in medians was used here as a 

comparison against the MWW test, yet it is worth noting that any test statistic, , can be computed in a 𝜃

bootstrapped manner, provided the test is invariant to scaling. This is required as bootstrap test 

generates the null distribution by rescaling the distributions around 0. Thus, the test statistic must be the 

same at  and , e.g. the median and arithmetic mean are suitable, but the geometric mean is not.𝑋 𝑋 + 𝑛

Thus, the medianBootstrap method is a more appropriate analysis to identify differences in the spread of 

GFP, as cell count data exhibit unequal variances and differing distribution shapes between conditions 

and/or genotypes. Moreover, bootstrap testing can be extended to cell layer data, where means should 

be compared, as there is no difference in medians (Fig. 1d). An example of this extension is given in Notes 

S2 medianBootstrap.html.

We acknowledge alternative advanced statistical techniques, such as linear mixed effects models, for the 

analysis of these data. However, they require more assumptions and are less user-friendly – often leading 

to mistakes (Knief & Forstmeier, 2020). In addition, we note that data are more complex than a single 

metric and support the movement to present figures with the data points, as well as summary statistics 

(Weissgerber et al., 2019). Moreover, while a summary statistic like the median may remain unchanged, 

the distributions may still differ in a biologically relevant way, such as in a difference in variance. We 

consider this bootstrap method a good, easy-to-use, superior alternative to MWW analysis of cell-to-cell 

movement data.
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Supporting Information

Notes S1 A short R script that provides a bootstrap function (medianBootstrap()) for the comparison of 

medians between two datasets, which returns a p̂ value and associated confidence intervals – it can be 

used to directly replace the Mann-Whitney-Wilcoxon wilcox.test() function from base R. 

medianBootstrap(data1, data2, N = 5000, alpha = 0.05) requires two vectors of data (data1 and data2), 

and accepts to optional arguments: the number of bootstraps (N, default 5000) and the significance level 

for the constructing the confidence intervals (alpha, default 0.05).  

Notes S2 A primer on how to use the medianBootstrap.R code, with an example use case of the 

medianBootstrap() function; the code is then extended to replicate the functionality of a one-way ANOVA, 

allowing multiple-to-one bootstrap comparisons, as well as providing functions for the comparison of 

means and plotting the null distribution.  

Figure 1 Bootstrap statistics on GFP movement data.

(a) An example image of GFP moving from a single transformation site. The degree of movement can 

either be counted as the number of fluorescent cells (denoted with stars, 17 cells) or the number of cell A
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layers with GFP (blue overlays, 3 layers). Scale bar = 100 µm. (b – d) Top: Histogram of cell counts or 

layers, with the median and mean marked. Bottom: Bootstrap null distributions ( ) for the |𝜃 ∗ ― 𝜃|
differences in (b, c) median or (d) mean, with estimated  value and 95% confidence intervals (CI). The 𝑝

observed difference ( ) is marked by a red line. Data for (b) from Cheval et al. (2020) and data for (c, d) 𝜃

from Diao et al. (2018) both under the CC BY 4.0 licence.

Figure 2 Type I error rates are correctly controlled using a medianBootstrap method.

Three experiments were simulated in which data were compared from two samples drawn from different 

distributions with equal medians. The false positive (Type I error) rate was estimated for the null 

hypothesis that population medians are the same using the Mann-Whitney-Wilcoxon and 

medianBootstrap test in each experiment with 1000 simulations. The 95% confidence intervals for the 

Type I error rate are indicated by shading. Each experiment was repeated with differing sample sizes for 

both  and .  (a) Two samples were drawn from identical distributions. (b) Two samples have the same 𝐴 𝐵

mean, but differing variances (c) Two samples have the same variance, but differ in shape and mean. The 

medians of each distribution are marked with a dashed line.
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