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Summary 10 

Plasmodesmata are an increasing focus of plant research, and plant physiologists frequently aim to 11 

understand the dynamics of intercellular movement and plasmodesmal function. For this, 12 

experiments that measure the spread of GFP between cells are commonly performed to indicate 13 

whether plasmodesmata are more open or closed in different conditions or in different genotypes.  14 

We propose cell-to-cell movement data sets are better analysed by a bootstrap method that tests 15 

the null hypothesis that means (or medians) are the same between two conditions, instead of the 16 

commonly used  Mann-Whitney-Wilcoxon test.  We found that that with hypothetical distributions 17 

similar to cell-to-cell movement data, the Mann-Whitney-Wilcoxon produces a false positive rate of 18 

17% while the bootstrap method maintains a false positive at the set rate of 5% under the same 19 

circumstances.  Here we present this finding, as well as our rationale, an explanation of the 20 

bootstrap method and an R script for easy use. We have further demonstrated its use on published 21 

datasets from independent laboratories. 22 

Main Text 23 

Symplastic cell-to-cell connectivity is dynamically regulated in plants as a component of 24 

developmental and environmental responses (Perbal et al., 1996; Wada et al., 2002; Faulkner et al., 25 

2013). Connectivity is established between cells by plasmodesmata, which function as a key 26 

parameter to define the dynamics of cell-to-cell connectivity. It is critical to assay the degree of 27 

movement of different molecules between cells to understand the range and dynamics of cell-to-cell 28 

communication as well as to assay plasmodesmal function under different conditions or in different 29 

genotypes. Accurate experimental analysis is critical to understanding this important component of 30 

plant physiology. 31 
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There are two routinely used methods, with a cellular resolution, to assay the spread of GREEN 32 

FLUORESCENT PROTEIN (GFP) from one cell into neighbouring cells: microprojectile bombardment, 33 

and low OD600 Agrobacterium tumefaciens infiltration (Oparka et al., 1999; Burch-Smith & Zambryski, 34 

2010). These assays allow the experimenter to count the number of cells (‘cell count’), or the 35 

number of concentric rings of cells (‘cell layers’), to which GFP has spread from a single cell (Fig. 1a). 36 

This serves as a measure of symplastic connectivity – the further the GFP has spread, the greater the 37 

degree of connection (or of plasmodesmata permeability) between cells. Neither cell nor layer 38 

counts are parametrically distributed (Fig. 1b – d, upper), so most studies use the non-parametric 39 

Mann–Whitney–Wilcoxon (MWW) test to compare conditions to identify factors that regulate the 40 

connection and communication between cells. 41 

Most experiments aim to assess whether connectivity is greater or less under different conditions, or 42 

whether plasmodesmata are more open or closed, which involves analysis of changes in the median 43 

or mean. The MWW tests the null hypothesis that two data distributions are the same (Mann & 44 

Whitney, 1947), not whether the two distributions have the same median. Therefore, it is possible to 45 

find a significant difference in an MWW test with distributions that have the same median, but 46 

different variances (Hart, 2001). When data from cell count assays are presented in histogram form, 47 

it is clear that the shape of the distributions differs between experimentally compared conditions or 48 

genotypes (Fig. 1b, c) (Guseman et al., 2010; Diao et al., 2018; Cheval et al., 2020). Thus, if an MWW 49 

test is used on cell count data, the difference in distribution shapes between conditions may lead to 50 

the erroneous conclusion that there is a significant difference in the amount of spread of GFP. 51 

Therefore, a different statistical method is required to properly interpret differences in GFP spread. 52 

For this, we propose a bootstrap method (Efron, 1979). Unlike the MWW test, bootstrapping works 53 

with data that is both non-parametric and heteroskedastic (differing variance between conditions).  54 

The goal of the analysis is to estimate the probability that the observed difference in medians (��) 55 

came about by chance (a � value). Frequentist statistics does this by comparing ��  to a null 56 

distribution. In this case, the null distribution describes the probability of observing a difference in 57 

medians, when there is no true difference in the underlying data. Usually, a known distribution is 58 

used (e.g. t-distribution or F-distribution) but in this case it is unknown because the data do not 59 

follow parametric distributions (Fig. 1b, c). 60 

Bootstrapping techniques can be used to generate a null distribution de novo from the observed 61 

data already collected, as long as the samples are independent. This removes the requirement of 62 

using a known distribution. To do this, the observed data are sampled with replacement to generate 63 

a resample. This mimics what the experimenter has done originally when observing the true 64 
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population. The relationship between multiple resamples and the observed data can be used to 65 

reveal how the observed data relate to the true population, and so estimate a � value for the 66 

observation. 67 

An example R function is provided to perform this analysis (medianBootstrap.R, 68 

https://github.com/faulknerfalcons/Johnston-2020-Bootstrap), which requires two arguments, i.e. 69 

two vectors of numbers: control and treatment. The function generates a null distribution to 70 

compare against by resampling each vector � times (by default 5000) and, for each resample, 71 

generating a resampled test statistic (���). These � resampled test statistics are made into a null 72 

distribution by ����
� � ��� (Fig. 1b – c, lower) as suggested by Hall and Wilson (1991). 73 

As this is a random sampling technique, an exact � value cannot be calculated but an estimate is 74 

produced: a Monte Carlo �̂ value (Eqn. 1). To do so, �� is compared to the null distribution to find the 75 

chance of observing a value at least as extreme (line on Fig. 1b – c, lower). A 	1 is added to the 76 

numerator and denominator in Eqn. 1 as suggested by Davison and Hinkley (1997): conceptually, this 77 

can be considered as including the observed sample among the bootstrap resamples. 78 

�̂ �  
∑ ������

� � ��� �  ��� 	 1�
� � �

� 	 1
   ���. 1 

where ��·� is the indicator function. 79 

As �̂ is an estimate of �, a 95% confidence interval should be constructed, where � will fall within 80 

this range 95% of the time (Wilson, 1927). 81 

This method is not confounded by differences in variance or shape as with the MWW test. To 82 

illustrate this, we compared the Type I error rate (false positives) between the MWW and 83 

medianBootstrap tests, when testing if there is a difference in medians between two populations for 84 

which there was no true difference in medians, i.e. � � 0. In this scenario, an error rate of 5% is 85 

expected at � � 0.05 . Samples ( � � 100 ) for each population were drawn from normal 86 

distributions with the same variance (�, �~��0,1)) simulated in R 4.0.0 (R Core Team, 2020). Both 87 

the MWW and medianBootstrap methods gave a difference in medians about 5% of the time, as 88 

expected (4.5% (95% CI [3.4, 6.0]) and 4.9% (95% CI [3.7, 6.4]), respectively). When variances 89 

differed between populations (�~��0,1), �~��0, 5�)), the MWW test had a false positive rate 90 

significantly higher than the set 5% of 7.5% (95% CI [6.0, 9.3]). Conversely, the false positive rate of 91 

the medianBootstrap method was correctly controlled at 4.7% (95% CI [3.6, 6.2]). 92 

Alternatively, when two samples are drawn from populations with equal variance and median, but 93 

differing shape (�~��1 � �

√�
� , 	


�
�, �~ !"#�1,3�), a medianBootstrap method finds a significant 94 
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difference in 5.1% of the trials (95% CI [3.9, 6.6]), as expected. Whereas, an MWW test inflates the 95 

Type I error rate to 17% (95% CI [15, 19]). Therefore, as cell count data exhibit unequal variances and 96 

differing distribution shapes between conditions and/or genotypes, we propose that bootstrap 97 

methods are a more appropriate analysis to identify differences in the spread of GFP. It is worth 98 

noting that any test statistic, �, can be computed in a bootstrapped manner, provided the test is 99 

invariant to scaling. This means bootstrap testing can be extended to cell layer data, where means 100 

should be compared, as there is no difference in medians (Fig. 1d). An example of this extension is 101 

given in medianBootstrap.html.  102 

We acknowledge alternative advanced statistical techniques, such as linear mixed effects models, for 103 

the analysis of these data. However, they require more assumptions and are less user-friendly. We 104 

consider this bootstrap method a good, easy-to-use, superior alternative to MWW analysis of cell-to-105 

cell movement data. 106 

Acknowledgments 107 

We thank Joanna Jennings (Department of Crop Genetics, John Innes Centre) for providing the 108 

confocal micrograph in Fig. 1a and Dr Joshua Hodgson (Department of Medicine, University of 109 

Cambridge) and Dr Matthew Castle (Department of Genetics, University of Cambridge) for 110 

constructive comments on the manuscript. The data in Fig. 1 comes from (b) Figure S2 of Cheval et 111 

al. (2020), (c) Figure 2d Diao et al. (2018), (d) Figure 2c Diao et al. (2018) under use of the CC BY 4.0 112 

licence. MGJ is funded by a John Innes Foundation Studentship. Research in the Faulkner lab is 113 

supported by the Biotechnology and Biological Research Council Grant (BB/L000466/1, 114 

BBS/E/J/000PR9796) and the European Research Council (725459, “INTERCELLAR”). 115 

Author Contributions 116 

MGJ and CF designed, discussed and wrote up the research. MGJ performed the analysis. 117 

References 118 

Burch-Smith TM, Zambryski PC. 2010. Loss of increased size exclusion limit (ise)1 or ise2 increases 119 

the formation of secondary plasmodesmata. Current Biology 20: 989–993. 120 

Cheval C, Samwald S, Johnston MG, de Keijzer J, Breakspear A, Liu X, Bellandi A, Kadota Y, Zipfel C, 121 

Faulkner C. 2020. Chitin perception in plasmodesmata characterizes submembrane immune-122 

signaling specificity in plants. Proceedings of the National Academy of Sciences 117: 9621–9629. 123 

Davison AC, Hinkley D V. 1997. Bootstrap Methods and their Application. Cambridge University 124 

Press. 125 

Diao M, Ren S, Wang Q, Qian L, Shen J, Liu Y, Huang S. 2018. Arabidopsis formin 2 regulates cell-to-126 

cell trafficking by capping and stabilizing actin filaments at plasmodesmata. eLife 7: e36316. 127 

Efron B. 1979. Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics 7: 1–26. 128 



5 

 

Faulkner C, Petutschnig E, Benitez-Alfonso Y, Beck M, Robatzek S, Lipka V, Maule AJ. 2013. LYM2-129 

dependent chitin perception limits molecular flux via plasmodesmata. Proceedings of the National 130 

Academy of Sciences 110: 9166–9170. 131 

Guseman JM, Lee JS, Bogenschutz NL, Peterson KM, Virata RE, Xie B, Kanaoka MM, Hong Z, Torii 132 

KU. 2010. Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function 133 

mutation in Arabidopsis CHORUS (GLUCAN SYNTHASE-LIKE 8). Development 137: 1731–1741. 134 

Hall P, Wilson SR. 1991. Two Guidelines for Bootstrap Hypothesis Testing. Biometrics 47: 757–762. 135 

Hart A. 2001. Mann-Whitney test is not just a test of medians: Differences in spread can be 136 

important. British Medical Journal 323: 391–393. 137 

Mann HB, Whitney DR. 1947. On a Test of Whether one of Two Random Variables is Stochastically 138 

Larger than the Other. The Annals of Mathematical Statistics 18: 50–60. 139 

Oparka KJ, Roberts AG, Boevink P, Cruz SS, Roberts I, Pradel KS, Imlau A, Kotlizky G, Sauer N, Epel 140 

B. 1999. Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in 141 

developing tobacco leaves. Cell 97: 743–754. 142 

Perbal MC, Haughn G, Saedler H, Schwarz-Sommer Z. 1996. Non-cell-autonomous function of the 143 

Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell 144 

trafficking. Development 122: 3433–41. 145 

R Core Team. 2020. R: A Language and Environment for Statistical Computing. 146 

Wada T, Kurata T, Tominaga R, Koshino-Kimura Y, Tachibana T, Goto K, Marks MD, Shimura Y, 147 

Okada K. 2002. Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root 148 

epidermal cell differentiation. Development 129: 5409–19. 149 

Wilson EB. 1927. Probable Inference, the Law of Succession, and Statistical Inference. Journal of the 150 

American Statistical Association 22: 209–212. 151 

Figure 1 Bootstrap statistics on GFP movement data. 152 

(a) An example image of GFP moving from a single transformation site. The degree of movement can 153 

either be counted as the number of fluorescent cells (denoted with stars, 17 cells) or the number of 154 

cell layers with GFP (blue overlays, 3 layers). Scale bar = 100 µm. (b – d) Top: Histogram of cell 155 

counts or layers, with the median and mean marked. Bottom: Bootstrap null distributions (���� � ���) 156 

for the differences in (b, c) median or (d) mean, with estimated �̂ value and 95% confidence intervals 157 

(CI). The observed difference (��) is marked by a red line. Data for (b) from Cheval et al. (2020) and 158 

data for (c, d) from Diao et al. (2018) both under the CC BY 4.0 licence. 159 




